By Topic

Comparison of Performance for SVM Based Relevance Feedback Document Retrieval in Several Vector Space Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Onoda, T. ; Central Res. Inst. of Electr. Power Ind., Komae ; Murata, H. ; Yamada, S.

We investigate the following data mining problems from the document retrieval: From a large data set of documents, we need to find documents that relate to human interest as few iterations of human testing or checking as possible. In each iteration a comparatively small batch of documents is evaluated for relating to the human interest. We apply active learning techniques based on Support Vector Machine for evaluating successive batches, which is called relevance feedback. Our proposed approach has been very useful for document retrieval with relevance feedback experimentally. In this paper, we adopt several Vector Space Models into our proposed method, and then show the comparison results of the performance of our method in several Vector Space Models.

Published in:

Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT '08. IEEE/WIC/ACM International Conference on  (Volume:3 )

Date of Conference:

9-12 Dec. 2008