By Topic

A Collaborative Reinforcement Learning Approach to Urban Traffic Control Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Salkham, A. ; Distrib. Syst. Group, Trinity Coll. Dublin, Dublin ; Cunningham, R. ; Garg, A. ; Cahill, V.

The high growth rate of vehicles per capita now poses a real challenge to efficient urban traffic control (UTC). An efficient solution to UTC must be adaptive in order to deal with the highly-dynamic nature of urban traffic. In the near future, global positioning systems and vehicle-to-vehicle/infrastructure communication may provide a more detailed local view of the traffic situation that could be employed for better global UTC optimization. In this paper we describe the design of a next-generation UTC system that exploits such local knowledge about a junction's traffic in order to optimize traffic control. Global UTC optimization is achieved using a local adaptive round robin (ARR) phase switching model optimized using collaborative reinforcement learning (CRL). The design employs an ARR-CRL-based agent controller for each signalized junction that collaborates with neighbouring agents in order to learn appropriate phase timing based on the traffic pattern. We compare our approach to non-adaptive fixed-time UTC system and to a saturation balancing algorithm in a large-scale simulation of traffic in Dublin's inner city centre. We show that the ARR-CRL approach can provide significant improvement resulting in up to ~57% lower average waiting time per vehicle compared to the saturation balancing algorithm.

Published in:

Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT '08. IEEE/WIC/ACM International Conference on  (Volume:2 )

Date of Conference:

9-12 Dec. 2008