By Topic

Assessment of the Robust Satellite Technique (RST) for volcanic ash plume identification and tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Marchese, F. ; Inst. of Methodologies of Environ. Anal., Nat. Res. Council, Potenza, Italy ; Corrado, R. ; Genzano, N. ; Mazzeo, G.
more authors

Volcanic clouds pose a serious threat for both aircrafts and passengers because of ash, which may cause serious damages to the flight control systems and to jet engines. Starting from 2007, an automatic satellite monitoring system has been implemented at IMAA (Institute of Methodologies of Environmental Analysis) to identify and track volcanic ash plumes using NOAA-AVHRR data. This system is capable of providing reliable information about possible volcanic ash plumes over a region of interest (ROI) within a few minute after the sensing time, thanks to the implementation of a robust multi-temporal approach of satellite data analysis named RST (Robust Satellite Technique). This approach has already shown a high potential in successfully identifying and tracking volcanic ash clouds compared to traditional techniques, both in its standard (i.e. two-channel) and advanced (i.e. three-channel) configuration. In this paper, RST performances for ash plume detection and monitoring will be further assessed, showing some recent results obtained during December 2006 and analyzing a time series of satellite observations carried out over Mount Etna area for different months in different observational conditions. In order to validate and assess RST performances, a long-term time domain analysis is in progress, also investigating periods mainly characterised by quiescent phases (i.e. with no ash emission episodes). Preliminary results of such a statistical analysis will be presented and the possible contribution of this satellite monitoring system in supporting management of strong eruptive crisis will also be discussed.

Published in:

Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, 2008. USEReST 2008. Second Workshop on

Date of Conference:

11-14 Nov. 2008