By Topic

Reduced-Bandwidth and Distributed MWF-Based Noise Reduction Algorithms for Binaural Hearing Aids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Doclo, S. ; Dept. of Electr. Eng. (ESAT-SCD), Katholieke Univ. Leuven, Leuven ; Moonen, M. ; Van den Bogaert, T. ; Wouters, J.

In a binaural hearing aid system, output signals need to be generated for the left and the right ear. Using the binaural multichannel Wiener filter (MWF), which exploits all microphone signals from both hearing aids, a significant reduction of background noise can be achieved. However, due to power and bandwidth limitations of the binaural link, it is typically not possible to transmit all microphone signals between the hearing aids. To limit the amount of transmitted information, this paper presents reduced-bandwidth MWF-based noise reduction algorithms, where a filtered combination of the contralateral microphone signals is transmitted. A first scheme uses a signal-independent beamformer, whereas a second scheme uses the output of a monaural MWF on the contralateral microphone signals and a third scheme involves an iterative distributed MWF (DB-MWF) procedure. It is shown that in the case of a rank-1 speech correlation matrix, corresponding to a single speech source, the DB-MWF procedure converges to the binaural MWF solution. Experimental results compare the noise reduction performance of the reduced-bandwidth algorithms with respect to the benchmark binaural MWF. It is shown that the best performance of the reduced-bandwidth algorithms is obtained by the DB-MWF procedure and that the performance of the DB-MWF procedure approaches quite well the optimal performance of the binaural MWF.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 1 )