Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Theoretical Analysis of a First-Order Azimuth-Steerable Superdirective Microphone Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Derkx, R.M.M. ; Philips Res. Labs., Eindhoven ; Janse, K.

A first-order azimuth-steerable superdirectional microphone response can be constructed by means of a linear combination of three eigenbeams (monopole and two orthogonal dipoles). Via this method, we can construct any first-order directivity pattern (monopole, cardioid, hypercardioid, etc.) that can be electronically steered to a certain angle on the 2-D plane to capture the desired signal. In this paper, the superdirectional responses are generated via a planar microphone array with a square geometry. We analyze the influence of spatial aliasing on the captured desired signal and the directivity index. Furthermore, we investigate the sensitivity for uncorrelated sensor noise and the sensitivity for phase- and magnitude-errors on the individual sensors. Finally, two rules of thumb are derived to choose the size of the microphone array.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 1 )