Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

POUPM: An Efficient Algorithm for Mining Partial Order User Preferences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianwen Tao ; Coll. of Inf. Eng., Zhejiang Bus. Technol. Inst., Ningbo ; Peifen Ding

Mining user preferences plays a critical role in many important applications such as customer relationship management, product and personalized service recommendation. Although of great potential, to the best of our knowledge, the problem of mining user preferences from positive and negative examples has not been explored before. In this paper, we identify and model the problem systematically. Our theoretical problem analysis indicates that mining preferences from positive and negative examples is challenging. We develop a greedy algorithm called POUPM and show the effectiveness and the efficiency of the algorithm using synthetic data sets.

Published in:

Intelligent Information Technology Application, 2008. IITA '08. Second International Symposium on  (Volume:3 )

Date of Conference:

20-22 Dec. 2008