By Topic

Stochastic multiscale approaches to consensus problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jong-Han Kim ; Dept. of Aeronaut. & Astronaut., Stanford Univ., Stanford, CA, USA ; West, M. ; Lall, S. ; Scholte, E.
more authors

While peer-to-peer consensus algorithms have enviable robustness and locality for distributed estimation and computation problems, they have poor scaling behavior with network diameter. We show how deterministic multi-scale consensus algorithms overcome this limitation and provide optimal scaling with network size, but at the cost of requiring global knowledge of network topology. To obtain the benefits of both single- and multi-scale consensus methods we introduce a class of stochastic message-passing schemes that require no topology information and yet transmit information on several scales, achieving scalability. The algorithm is described by a sequence of random Markov chains, allowing us to prove convergence for general topologies.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008