By Topic

Event-based optimization for dispatching policies in material handling systems of general assembly lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yanjia Zhao ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Qianchuan Zhao ; Qing-Shan Jia ; Xiaohong Guan
more authors

A material handling (MH) system of a general assembly line dispatching parts from inventory to working buffers could be complicated and costly to operate. Generally it is extremely difficult to find the optimal dispatching policy due to the complicated system dynamics and the large problem size. In this paper, we formulate the dispatching problem as a Markov decision process (MDP), and use event-based optimization framework to overcome the difficulty caused by problem dimensionality and size. By exploiting the problem structures, we focus on responding to certain events instead of all state transitions, so that the number of aggregated potential function (i.e., value function) is scaled to the square of the system size despite of the exponential growth of the state space. This effectively reduces the computational requirements to a level that is acceptable in practice. We then develop a sample path based algorithm to estimate the potentials, and implement a gradient-based policy optimization procedure. Numerical results demonstrate that the policies obtained by the event-based optimization approach significantly outperform the current dispatching method in production.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008