By Topic

Convex formulations of aggregate network air traffic flow optimization problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The problem of regulating air traffic in the en route airspace of the national airspace system is studied using an Eulerian network model to describe air traffic flow. The evolution of traffic on each edge of the network is modeled by a modified Lighthill-Whitham-Richards partial differential equation. We pose the problem of optimal traffic flow regulation as a continuous optimization program in which the partial differential equation appears in the constraints. The equation is transformed with a variable change which removes t nonlinearity in the control variables and enables us to use linear finite difference schemes to discretize the problem. Corresponding linear programming and quadratic programming based solutions to this convex optimization program yield a globally optimal solution. The technique is applied for a network scenario in the Oakland Air Route Traffic Control Center.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008