Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Work, D.B. ; Dept. of Civil & Environ. Eng., Univ. of California, Berkeley, CA, USA ; Tossavainen, O.-P. ; Blandin, S. ; Bayen, A.M.
more authors

Traffic state estimation is a challenging problem for the transportation community due to the limited deployment of sensing infrastructure. However, recent trends in the mobile phone industry suggest that GPS equipped devices will become standard in the next few years. Leveraging these GPS equipped devices as traffic sensors will fundamentally change the type and the quality of traffic data collected on large scales in the near future. New traffic models and data assimilation algorithms must be developed to efficiently transform this data into usable traffic information. In this work, we introduce a new partial differential equation (PDE) based on the Lighthill-Whitham-Richards PDE, which serves as a flow model for velocity. We formulate a Godunov discretization scheme to cast the PDE into a Velocity Cell Transmission Model (CTM-v), which is a nonlinear dynamical system with a time varying observation matrix. The Ensemble Kalman Filtering (EnKF) technique is applied to the CTM- v to estimate the velocity field on the highway using data obtained from GPS devices, and the method is illustrated in microsimulation on a fully calibrated model of I880 in California. Experimental validation is performed through the unprecedented 100-vehicle Mobile Century experiment, which used a novel privacy-preserving traffic monitoring system to collect GPS cell phone data specifically for this research.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008