By Topic

Decentralized model predictive control via dual decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wakasa, Y. ; Grad. Sch. of Sci. & Eng., Yamaguchi Univ., Ube, Japan ; Arakawa, M. ; Tanaka, K. ; Akashi, T.

This paper proposes a decentralized model predictive control method based on a dual decomposition technique. A model predictive control problem for a system with multiple subsystems is formulated as a convex optimization problem. In particular, we deal with the case where the control outputs of the subsystems have coupling constraints represented by linear equalities. A dual decomposition technique is applied to this problem in order to derive the dual problem with decoupled equality constraints. A projected subgradient method is used to solve the dual problem, which leads to a decentralized algorithm. In the algorithm, a small-scale problem is solved at each subsystem, and information exchange is performed in each group consisting of some subsystems. Also, it is shown that the computational complexity in the decentralized algorithm is reduced if the dynamics of the subsystems are all the same. Numerical examples are given to show the effectiveness of the proposed method.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008