Cart (Loading....) | Create Account
Close category search window
 

Reachability calculations for automated aerial refueling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ding, J. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Sprinkle, J. ; Sastry, S.S. ; Tomlin, C.J.

This paper describes Hamilton-Jacobi (HJ) reachability calculations for a hybrid systems formalism governing unmanned aerial vehicles (UAVs) interacting with another vehicle in a safety-critical situation. We use this problem to lay the foundations toward the goal of refining or designing protocols for multi-UAV and/or manned vehicle interaction. We describe here what mathematical foundations are necessary to formulate verification problems on reachability and safety of flight maneuvers. We finally show how this formalism can be used in the chosen application to inform UAV decisions on avoiding unsafe scenarios while achieving mission objectives.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.