By Topic

Convergence properties of a decentralized Kalman filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We consider the problem of decentralized Kalman filtering in a sensor network. Each sensor node implements a local Kalman filter based on its own measurements and the information exchanged with its neighbors. It combines the information received from other sensors through using a consensus filter as proposed in [14]. For a time-invariant process and measurement model, we show that this algorithm guarantees that the local estimates of the error covariance matrix converge to the centralized error covariance matrix and that the local estimates of the state converge in mean to the centralized Kalman filter estimates. However, due to the use of the consensus filter, the local estimates of the state do not converge to the least-squares estimate that would be obtained from a centralized Kalman filter.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008