Cart (Loading....) | Create Account
Close category search window
 

Robust design of a spacecraft attitude tracking control system with actuator uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chakrabortty, A. ; Rensselaer Polytech. Inst., Troy, NY, USA ; Arcak, M. ; Tsiotras, P.

In this paper we apply the robust redesign for transient performance recovery of nonlinear systems with input uncertainties developed in [2] to a spacecraft attitude tracking problem with actuator uncertainties. We first extend the robust design of [2] to a generalized uncertainty structure. Next, we show that when the spin and transverse axis directions and/or the gains of the flywheel actuators are uncertain, the kinematic model of a spacecraft can be expressed in this structure. We apply the extended design to this spacecraft model, illustrate it with a simulation example, and numerically compute the permissible range of the uncertainties for which this design guarantees stability.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.