By Topic

Finite-time and practical stability of a class of stochastic dynamical systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michel, A.N. ; Dept. of Electr. Eng., Univ. of Notre Dame, Notre Dame, IN, USA ; Ling Hou

In practice, one is not only interested in qualitative characterizations provided by Lyapunov and Lagrange stability, but also in quantitative information concerning system behavior, including estimates of trajectory bounds over finite and infinite time intervals. This type of information has been ascertained in a systematic manner using the notions of finite-time stability and practical stability. In the present paper we generalize some of the existing finite-time stability and practical stability results for deterministic dynamical systems determined by ordinary differential equations to dynamical systems determined by an important class of stochastic differential equations. We consider two types of stability concepts: finite-time and practical stability in the mean and in the mean square. We demonstrate the applicability of our results by means of several examples.

Published in:

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on

Date of Conference:

9-11 Dec. 2008