By Topic

Modeling and Analysis of the Effect of Noise on an Edge Filter Based Ratiometric Wavelength Measurement System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rajan, G. ; Sch. of Electron. & Commun. Eng., Dublin Inst. of Technol., Dublin ; Semenova, Y. ; Freir, T. ; Pengfei Wang
more authors

Theoretical modeling, analysis, and experimental investigation of effect of noise on an edge filter based ratiometric wavelength measurement system have been carried out. A basic noise model for a ratiometric wavelength measurement system which considers both optical and electrical noise is presented. The ratio response of the system has been theoretically modeled considering the limited signal-to-noise ratio (SNR) of source and noise of the receiver circuit and experimentally verified using a macrobend fiber edge filter based ratiometric system. It is shown both theoretically and experimentally that increasing the slope of the edge filter is not necessarily an efficient solution to increasing the resolution of the system and the effect of noise must be accounted for. The resolution of the system changes with wavelength, and an optimization of slope of the ratio of the system is necessary to determine the best possible resolution for a wider wavelength range. In the demonstrated example, we have shown that for systems with slopes of 0.16, 0.22, and 0.31 dB/nm, one can achieve 10-pm resolution for a range of 36, 22, and 16 nm, respectively, starting from 1500 nm in the presence of receiver noise at -10-dBm input power and with an optical signal SNR of 50 dB.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 20 )