By Topic

Arbitrary Phase-Modulated RF Signal Generation Based on Optical Pulse Position Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yitang Dai ; Sch. of Inf. Technol. & Eng., Univ. of Ottawa, Ottawa, ON ; Jianping Yao

In this paper, the generation of an arbitrary band-limited phase-modulated RF signal from a pulse-position-modulated (PPM) optical pulse train is investigated. We show that a specifically designed PPM pulse train would have a multichannel spectral response, with one channel having the spectrum corresponding to a phase-modulated RF signal. By using a microwave bandpass filter to select the channel of interest, a phase-modulated RF signal is obtained. The relationship between the pulse position modulation and the phase modulation is derived and analyzed. Two design examples are presented, with one for the generation of a chirped RF signal, and the other for the generation of a binary phase-coded RF signal. The chirped pulse has a central frequency of 50 GHz and a 3-dB bandwidth of 12.5 GHz. The binary phase-coded RF pulse has 15 chips with a central frequency of 5.34 GHz. The proposed approach provides a simple and effective solution for the generation of high-speed arbitrary phase-modulated RF waveforms for applications in modern radar, communications, and imaging systems.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 19 )