Cart (Loading....) | Create Account
Close category search window
 

Tunable Monolithic DWDM Band-Selection Interleaver Filter Switch on Silicon-on-Insulator Substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zhigang Wu ; Sch. of Sci. & Eng., Waseda Univ., Tokyo ; Honda, S. ; Matsui, J. ; Utaka, K.
more authors

A tunable band-selection interleaver filter switch formed on a silicon-on-insulator (SOI) substrate for dense wavelength-division-multiplexing (DWDM) system was fabricated, and its fundamental performances were experimentally demonstrated. The device consists of monolithic integration of a Michelson interferometer (MI) structure with two arm-waveguides with different lengths, appropriately designed for ITU-grid separation, a phase-modulation electrode on one arm and tunable wideband Bragg gratings reflectors. An SOI rib waveguide structure with a medium mode size was adopted for low loss and easy fabrication. A bandwidth of the grating, formed by electron beam (EB) lithography and deep reactive-ion etching (Deep-RIE), was rather large of 4 nm at -10 dB transmission level, from which a large coupling coefficient of the Bragg grating of 105 cm-1 was evaluated. A large tuning range of the Bragg grating of 17 nm was obtained. An extinction ratio of the interleaver filter was about 18 dB, and the interleaving switching was also attained with an applied electric power of 50 mW and a switching speed of about 1 ms.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 19 )

Date of Publication:

Oct.1, 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.