By Topic

Statistical Investigations of the Transmission Performance of Adaptively Modulated Optical OFDM Signals in Multimode Fiber Links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jin, X.Q. ; Sch. of Electron. Eng., Univ. of Wales, Bangor ; Tang, J.M. ; Qiu, K. ; Spencer, P.S.

Statistical investigations of the transmission performance of Adaptively Modulated Optical Orthogonal Frequency Division Multiplexing (AMOOFDM) are undertaken in single-channel, optical amplifier-free, Multimode Fiber (MMF)-based links using Intensity Modulation and Direct Detection (IMDD). Numerical simulations are performed using statistically constructed 1000 worst-case MMF links having 3-dB bandwidths varying in a range of 220-490 MHz middot km. It is shown that, by employing practically available devices, >30 Gb/s over 300-m AMOOFDM signal transmission is achievable in 99.5% of already installed MMF links, while by employing components that may be available in the future, the AMOOFDM technique is capable of supporting 100 Gb/s over 150-m signal transmission in 99.5% of already installed MMF links. In addition, it is confirmed, from a statistical point of view, that AMOOFDM has excellent flexibility and great robustness to different types of fibers and lasers, restricted launch conditions and practical implementation-related factors such as optical connector offset. It is also found that cyclic prefix and quantization are the key factors limiting the maximum achievable transmission performance of the AMOOFDM technique.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 18 )