By Topic

Enhanced Cascaded SHG+DFG Process of Femtosecond Pulses Using Chirp Quasi-Phase Matching Waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shih-Chiang Lin ; Dept. of Commun. Eng., I-Shou Univ., Dashu ; Nai-Hsiang Sun ; Jung-Sheng Chiang

This study presents a chirp quasi-phase matching (QPM) waveguide to increase the conversion efficiency of the cascaded SHG+DFG effect for femtosecond pulses. The coupled mode theory is used to analyze the cascaded SHG+DFG process. In this paper, a constructive interference zone (or cascaded SHG+DFG region) is defined as when the conversion wave and its coupling component constructively interfere with each other and have a phase difference ranging from 0 to 0.5pi or from 1.5 to 2pi. On the other hand, the region is called a destructive interference zone (or back conversion region) when the phase difference ranges from 0.5 to 1.5pi . The proposed chirp QPM waveguide is designed to extend constructive interference length and shorten destructive interference length over the waveguide. The simulation results demonstrate that for a pulsewidth of 0.6 ps, the maximum conversion efficiency of a 50-mm chirp QPM waveguide can be increased to 25 times that of a uniform QPM waveguide.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 17 )