By Topic

Low Phase Noise Self-Switched Biasing CMOS LC Quadrature VCO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guochi Huang ; Sch. of Inf. & Commun., Sungkyunkwan Univ., Suwon ; Byung-Sung Kim

A self-switched biasing quadrature voltage-controlled oscillator (VCO) is presented. It is implemented by directly injecting the oscillation signal of one VCO core into the other VCO core through the divided tail current sources without additional active devices for coupling. The proposed coupling structure automatically switches the NMOS field-effect transistors used in VCO cores and current sources from strong inversion to accumulation. Since the deep switching of MOSFETs was reported to physically reduce flicker noise, the proposed quadrature VCO (QVCO) is expected to improve the phase noise performance, which is confirmed experimentally. The designed QVCO using 0.18- mum CMOS technology operates from 1.86 to 2.2 GHz with a 17% frequency tuning range. The measured phase noise is from - 129.1 to - 134.5 dBc/Hz at a 1-MHz offset, which is really close to ideal simulation results with the NMOS model disabling the flicker noise components. The average measured phase noise is 7.2 dB below the simulated one with a flicker noise model, which verifies the physical reduction of flicker noise by deep switching of the MOSFET. The phase noise figure-of-merit ranges from 179 to 185 over the entire tuning range. The QVCO dissipates 20 mA from a 1.8-V supply.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:57 ,  Issue: 2 )