By Topic

Assessing the Impact of SiC MOSFETs on Converter Interfaces for Distributed Energy Resources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Carr, J.A. ; Dept. of Electr. Eng., Univ. of Arkansas, Fayetteville, AR ; Hotz, D. ; Balda, J.C. ; Mantooth, H.A.
more authors

Distributed energy resources (DERs) are becoming integral components of electric power distribution systems. In most cases, an isolated DC-DC converter forms part of the interface required to connect the DER output to the distribution system. Operation of the converter at high switching frequencies results in size reduction of passive components at the expense of increased switching losses. However, silicon carbide (SiC) power devices have the potential of operating at high switching frequencies without significant loss penalty because of their fast switching times and ability to work at high temperatures when compared to similar Si devices. SiC diodes have already displayed the ability to offer more ideal diode behavior than Si diodes. Engineering samples of SiC MOSFETs are depicting lower switching losses and conduction losses over Si MOSFETs. This display is making SiC devices attractive for DC-DC converters used to connect DERs to the distribution system. This paper particularly deals with the design of a 300 W 100 kHz DC-DC full-bridge converter using zero-voltage zero-current switching for comparison of SiC MOSFETs and diodes against Si MOSFETs and diodes.

Published in:

Power Electronics, IEEE Transactions on  (Volume:24 ,  Issue: 1 )