By Topic

Estimation of Energy Yield From Wind Farms Using Artificial Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mabel, M.C. ; Indian Inst. of Technol.-Roorkee, Roorkee ; Fernandez, E.

This paper uses the data from seven wind farms at Muppandal, Tamil Nadu, India, collected for three years from April 2002 to March 2005 for the estimation of energy yield from wind farms. The model is developed with the help of neural network methodology, and it involves three input variables-wind speed, relative humidity, and generation hours-and one output variable, which give the energy output from wind farms. The modeling is done using MATLAB software. The most appropriate neural network configuration after trial and error is found to be 3-5-1 (3 input layer neurons, 5 hidden layer neurons, 1 output layer neuron). The mean square error for the estimated values with respect to the measured data is 7.6times10-3. The results demonstrate that this work is an efficient energy yield estimation tool for wind farms.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:24 ,  Issue: 2 )