By Topic

A 3-D High-Frequency Array Based 16 Channel Photoacoustic Microscopy System for In Vivo Micro-Vascular Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rachel Bitton ; Univ. of Southern California, Los Angeles, CA, USA ; Roger Zemp ; Jesse Yen ; Lihong V. Wang
more authors

This paper discusses the design of a novel photoacoustic microscopy imaging system with promise for studying the structure of tissue microvasculature for applications in visualizing angiogenesis. A new 16 channel analog and digital high-frequency array based photoacoustic microscopy system (PAM) was developed using an Nd: YLF pumped tunable dye laser, a 30 MHz piezo composite linear array transducer, and a custom multichannel receiver electronics system. Using offline delay and sum beam- forming and beamsteering, phantom images were obtained from a 6 mum carbon fiber in water at a depth of 8 mm. The measured -6 dB lateral and axial spatial resolution of the system was 100 plusmn 5 mum and 45 plusmn 5 mum, respectively. The dynamic focusing capability of the system was demonstrated by imaging a composite carbon fiber matrix through a 12.5 mm imaging depth. Next, 2-D in vivo images were formed of vessels around 100 mum in diameter in the human hand. Three-dimensional in vivo images were also formed of micro-vessels 3 mm below the surface of the skin in two Sprague Dawley rats.

Published in:

IEEE Transactions on Medical Imaging  (Volume:28 ,  Issue: 8 )