Cart (Loading....) | Create Account
Close category search window

Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Isgum, I. ; Dept. of Radiol., Univ. Med. Center Utrecht, Utrecht ; Staring, M. ; Rutten, A. ; Prokop, M.
more authors

A novel atlas-based segmentation approach based on the combination of multiple registrations is presented. Multiple atlases are registered to a target image. To obtain a segmentation of the target, labels of the atlas images are propagated to it. The propagated labels are combined by spatially varying decision fusion weights. These weights are derived from local assessment of the registration success. Furthermore, an atlas selection procedure is proposed that is equivalent to sequential forward selection from statistical pattern recognition theory. The proposed method is compared to three existing atlas-based segmentation approaches, namely (1) single atlas-based segmentation, (2) average-shape atlas-based segmentation, and (3) multi-atlas-based segmentation with averaging as decision fusion. These methods were tested on the segmentation of the heart and the aorta in computed tomography scans of the thorax. The results show that the proposed method outperforms other methods and yields results very close to those of an independent human observer. Moreover, the additional atlas selection step led to a faster segmentation at a comparable performance.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.