By Topic

Learning from the Primary Visual Cortex to Recover Vision for the Blind by Microstimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sawan, M. ; Polystim Neurotechnology Lab., Univ. of Montreal, Montreal, QC, Canada ; Gosselin, B. ; Coulombe, J.

This paper covers circuits and systems techniques for the construction of high reliability biosensing and microneurostimulation medical devices. Such implantable devices are dedicated for interconnections to intracortical neural tissues. Low-power high-reliability wireless links are used to power up such implanted devices while bidirectional data are exchanged between these microsystems and external controllers. Global view of main devices will be described, case studies related to monitoring and microstimulation in the primary visual cortex will be discussed, and special attention will be paid to massively parallel recording of neural signals, microstimulation through a large arrays of electrodes and power management of these bioelectronic devices.

Published in:

NORCHIP, 2008.

Date of Conference:

16-17 Nov. 2008