By Topic

Optimal retail shelf space allocation with dynamic programming using bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gajjar, H.K. ; Shailesh J. Mehta Sch. of Manage., Indian Inst. of Technol.-Bombay, Mumbai, India ; Adil, G.K.

Efficient shelf space allocation increases profitability of a retail store and thus provides competitive advantage to the retailer. Several shelf space allocation models exist in literature. However, these models are generally solved using heuristic approaches due to NP-hard nature and there is a need to develop exact methods. In this paper, we present a non-linear shelf-space allocation model (NLSSAM) and optimally solve it with a new dynamic programming (NDP) using bounds which fathoms unpromising states. It is found from experimental studies that NDP using bound was much more efficient to solve large problems as compared to original dynamic programming (ODP) without using bound. ODP could not solve all problem instances of problem sizes (number of products, n = 30 and 40) within specified CPU time limit of 400 seconds while NDP could solved problem instances of size (n = 200) with average CPU time of 7.89 seconds.

Published in:

Industrial Engineering and Engineering Management, 2008. IEEM 2008. IEEE International Conference on

Date of Conference:

8-11 Dec. 2008