Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Selection of optimum maintenance strategy for power plant equipment based on evidential reasoning and FMEA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong, Y.L. ; Key Lab. of Condition Monitoring & Control for Power Plant Equip. of Minist. of Educ., North China Electr. Power Univ., Beijing, China ; Gu, Y.J. ; Dong, X.F.

Aiming at the problem that it is difficult to select optimum maintenance strategy for power plant equipment, a method based on criticality evaluation and failure mode characteristic analysis is put forward. In the method, the uncertainty and incompletion of criticality evaluation factors are completely considered, qualitative and quantitative evidences are integrated and their acquisition and transformation method is put forward based on constructing criticality evaluation multiple-attribute decision tree. Then a decision tree criticality evaluation model is established, a corresponding evidential reasoning algorithm is deduced, and the equipment in power plant is ranked by criticality. Integrating the results of criticality evaluation and failure mode and effect analysis (FMEA), the decision model of selecting optimum maintenance strategy of power plant equipment is established and applied in a fossil-fired power station. It is shown by the instance that this method is feasible and effective, can select optimum maintenance strategy for power plant equipment.

Published in:

Industrial Engineering and Engineering Management, 2008. IEEM 2008. IEEE International Conference on

Date of Conference:

8-11 Dec. 2008