Cart (Loading....) | Create Account
Close category search window
 

A Genetic Algorithm-based approach to job shop scheduling problem with assembly stage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan, F.T.S. ; Dept. of Ind. & Manuf. Syst. Eng., Univ. of Hong Kong, Hong Kong, China ; Wong, T.C. ; Chan, L.Y.

Assembly job shop scheduling problem (AJSSP) is an extension of classical job shop scheduling problem (JSSP). AJSSP first starts with a JSSP and appends an assembly stage after job completion. In this paper, we extend Lot Streaming (LS) to AJSSP. Hence, the problem is divided into SP1: the determination of LS conditions for all lots and SP2: the scheduling of AJSSP after LS conditions have been determined. To solve the problem, we propose an innovative Genetic Algorithm (GA) approach. To investigate the impacts of LS on AJSSP, several system conditions are examined. To justify the GA, Particle Swarm Optimization (PSO) is the benchmarked method. Computational results suggest that equal size LS is the best strategy and GA outperforms PSO for all test problems. Some negative impacts of LS are the increase of work-in-process inventory and total setup cost if the objective is the minimization of total lateness cost.

Published in:

Industrial Engineering and Engineering Management, 2008. IEEM 2008. IEEE International Conference on

Date of Conference:

8-11 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.