Cart (Loading....) | Create Account
Close category search window
 

Automatic Segmentation and Labeling for Spontaneous Standard Malay Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seman, N. ; Fac. of Inf. Technol. & Quantitative Sci., MARA Univ. of Technol., Shah Alam, Malaysia ; Jusoff, K.

In this paper, we proposed an automatically segmenting and transcribing spontaneous speech signal without the use of manually annotated speech database. The spontaneous speech signal is first segmented into syllable-like units by considering short-term energy as a magnitude spectrum of some arbitrary signal. Similar syllable segments are then grouped together using an unsupervised incremental clustering technique. Separate models are generated for each cluster of syllable segments. At this stage, labels are assigned for each group of syllable segments manually. The syllable models of these clusters are then used to transcribe or recognize the spontaneous speech signal of closed-set speakers' data as well open-set speaker data. As a syllable recognizer, our initial results on Standard Malay television (TV3) news bulletins of the native and non-native speakers shows that the performance is 42.53% and 30.8% respectively.

Published in:

Advanced Computer Theory and Engineering, 2008. ICACTE '08. International Conference on

Date of Conference:

20-22 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.