By Topic

Artificial Neural Network Modeling for Efficient Photovoltaic System Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paul, D. ; SSBB & Senior Member-ASQ, Kolkata ; Mandal, S.N. ; Mukherjee, D. ; Chaudhuri, S.R.B.

Efficiency and certainty of payback have not yet attained desired level for solar photovoltaic energy systems. Despite huge development in prediction of solar radiation data, a clear disconnect in extraction and effective engineering utilization of pertinent information from such data is acting as a major roadblock towards penetration of this emerging technology. It is crucial to identify and optimize the most significant statistics representing insolation availability by a solar PV installation for all necessary engineering and financial calculation. A MATLAB program has been used to build the annual frequency distribution of hourly insolation over any module plane at a given site location. Descriptive statistical analysis of such distributions is done through MINITAB. To make the analysis more meaningful, composite frequency distribution for a Building Integrated Photo Voltaic (BIPV) set up has been considered, which is formed by weighted summation of insolation distributions for different module planes used in the installation. The most influential statistics of the composite distribution have been optimized through Artificial Neural Network Computation. This novel approach is expected to be a very powerful tool for the BIPV system designers.

Published in:

Advanced Computer Theory and Engineering, 2008. ICACTE '08. International Conference on

Date of Conference:

20-22 Dec. 2008