By Topic

A Hybrid Peer-to-Peer and Grid Job Scheduling System for Teaming Up Desktop Resources with Computer Clusters to Perform Turbulence Simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kay Dörnemann ; Dept. of Math. & Comput. Sci. / Phys., Univ. of Marburg, Marburg ; Tim Dörnemann ; Bernd Freisleben ; Tobias M. Schneider
more authors

Simulating turbulence in fluids is a fascinating part of physics which requires a high amount of computational power. Since for transitional Reynolds numbers each simulation run can be performed on a single contemporary CPU, turbulence studies are ideally suited for distributed computing where each node performs a simulation for a single initial condition. The approach presented in this paper makes use of unused computational power by integrating a dynamically changing set of possibly unreliable desktop PCs into a grid infrastructure of attentively administered dedicated cluster resources. The basic idea is to use peer-to-peer (P2P) technology for managing the set of computers and develop a "bridge" to interface the P2P network with a grid meta-scheduler which in turn interfaces with the grid middleware. This eliminates the need for central administration and continuous resource availability. It provides distributed scheduling, replicated storage and system monitoring capabilities. Experimental results obtained from an evaluation of our implementation show that our approach is both scalable and resilient in the presence of node failures and network churn.

Published in:

eScience, 2008. eScience '08. IEEE Fourth International Conference on

Date of Conference:

7-12 Dec. 2008