By Topic

Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ezaki, M. ; Dept. of Electr. Eng., Keio Univ., Yokohama, Japan ; Kumagai, Hiroshi ; Toyoda, Koichi ; Obara, Minoru

The surface modification of semiconductors by laser-induced surface electromagnetic wave (SEW) etching was investigated. With the novel etching method using a holographic exposure system, submicron periodic dot structures were fabricated directly on semiconductor substrates (n-InP, n-GaAs, and InGaAs-InP). Making use of laser polarization dependence in this etching system, a variety of surface modifications could be achieved on the semiconductors. In particular, in the case of using the s-polarization light, periodic submicron dot structures with a geometrical diameter down to 80 nm could be obtained directly using a single-step process without a mask. The InGaAs-InP dot structures were studied optically by means of photoluminescence spectroscopy, and the blue shift of the photoluminescence energy up to 5.36 meV was observed for the smallest dots, which displayed a lateral quantization

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:1 ,  Issue: 3 )