By Topic

A general class of lower bounds on the probability of error in multiple hypothesis testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tirza Routtenberg ; Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel ; Joseph Tabrikian

In this paper, a new class of lower bounds on the probability of error for m-ary hypothesis tests is proposed. Computation of the minimum probability of error which is attained by the maximum a-posteriori probability (MAP) criterion, is usually not tractable. The new class is derived using Holder¿s inequality. The bounds in this class are continuous and differentiable function of the conditional probability of error and they provide good prediction of the minimum probability of error in multiple hypothesis testing. It is shown that for binary hypothesis testing problem this bound asymptotically coincides with the optimum probability of error provided by the MAP criterion. This bound is compared with other existing lower bounds in several typical detection and classification problems in terms of tightness and computational complexity.

Published in:

Electrical and Electronics Engineers in Israel, 2008. IEEEI 2008. IEEE 25th Convention of

Date of Conference:

3-5 Dec. 2008