By Topic

Production of high average power UV by second-harmonic and sum-frequency generation from copper-vapor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Coutts, D.W. ; Centre for Lasers & Applications, Macquarie Univ., Sydney, NSW, Australia ; Brown, Daniel J.W.

Progress in high average power UV generation by nonlinear frequency conversion of the output of copper-vapor lasers (CVL's) is reviewed. The specific parameters controlling the efficiency of nonlinear frequency conversion using CVL's are highlighted, with CVL beam quality and matching the optical beam delivery system to the characteristics of the nonlinear crystal being identified as the most significant issues. Recent experimental studies of second harmonic generation (SHG) with single-CVL oscillators and CVL oscillator-amplifier systems show that by careful optimization of the CVL pump laser and beam delivery systems, it is now possible to generate multiwatt average powers in the UV with high optical conversion efficiency (up to 35%) and overall electrical efficiency (approaching 0.1%)

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:1 ,  Issue: 3 )