By Topic

Simulation optimization with mathematical programming representation of discrete event systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Matta, A. ; Dipt. di Meccanica, Politec. di Milano, Milan, Italy

Optimization-via-simulation consists in applying iteratively two detached models until an optimality condition is reached: a simulation model for predicting the system performance, and a model for generating potential optimal solutions. Mathematical programming representation has been recently used to describe the behavior of discrete event systems as well as their formal properties. This paper proposes explicit mathematical programming representations for jointly simulating and optimizing discrete event systems. The main advantage of such models is the rapidity of searching for the optimal solution, given to the explicit knowledge of objective function and constraints. Three types of formulations are proposed for solving the buffer allocation problem in flow lines with finite buffer capacities: an exact mixed integer linear model, an approximate LP model and a stochastic programming model. Numerical analysis shows that the computational time required to solve resource allocation problems can be significantly reduced by using the proposed formulations.

Published in:

Simulation Conference, 2008. WSC 2008. Winter

Date of Conference:

7-10 Dec. 2008