By Topic

An application of parallel Monte Carlo modeling for real-time disease surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bauer, D.W. ; MITRE Corp., McLean, VA, USA ; Mohtashemi, M.

The global health, threatened by emerging infectious diseases, pandemic influenza, and biological warfare, is becoming increasingly dependent on the rapid acquisition, processing, integration and interpretation of massive amounts of data. In response to these pressing needs, new information infrastructures are needed to support active, real time surveillance. Detection algorithms may have a high computational cost in both the time and space domains. High performance computing platforms may be the best approach for efficiently computing these algorithms. Unfortunately, these platforms are unavailable to many health care agencies. Our work focuses on efficient parallelization of outbreak detection algorithms within the context of cloud computing as a high throughput computing platform. Cloud computing is investigated as an approach to meet real time constraints and reduce or eliminate costs associated with real time disease surveillance systems.

Published in:

Simulation Conference, 2008. WSC 2008. Winter

Date of Conference:

7-10 Dec. 2008