By Topic

Suspended Cell Patterning for Automatic Microrobotic Cell Injection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wang, W.H. ; Dept. of Mech. Eng., Univ. of Canterbury, Christchurch ; Alkaisi, M.M. ; Chase, J.G. ; Chen, X.Q.
more authors

Microinjection of DNA/mRNA/morpholinos is a critical technology for molecular biology and drug discovery. When dealing with suspended cells, state-of-the-art manual injection involves a time-consuming and tedious sample preparation procedure, to accurately align cells. To enable automatic microrobotic cell injection, this paper reports on two inexpensive, reusable, biocompatible, and easy-to-make devices that are capable of patterning a large number of cells in 10-30 seconds. One device is based on negative air pressure and made of polycarbonate using a conventional micro-machining process. It is particularly suitable for cells larger than 100 mum, such as the zebrafish embryo patterning and successful gene 'knock-down' products of the morpholino-injected embryos. The other device is based on dielectrophoresis and suitable for cells smaller than 100 mum, demonstrated by successful trapping of pituitary cells. These devices offer a complete solution for suspended cells in all size spectrums to be prepared up to 10 times faster than manual human preparation. Furthermore, this approach can facilitate high-throughput automatic microrobotic cell injection, for injection applications such as the injection of zebrafish embryos, mouse oocytes/embryos, Drosophila embryos, and other types of suspended cells.

Published in:

Mechtronic and Embedded Systems and Applications, 2008. MESA 2008. IEEE/ASME International Conference on

Date of Conference:

12-15 Oct. 2008