Cart (Loading....) | Create Account
Close category search window
 

Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chua, L.O. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Hasler, Martin ; Moschytz, George S. ; Neirynck, Jacques

This tutorial paper proposes a subclass of cellular neural networks (CNN) having no inputs (i.e., autonomous) as a universal active substrate or medium for modeling and generating many pattern formation and nonlinear wave phenomena from numerous disciplines, including biology, chemistry, ecology, engineering, and physics. Each CNN is defined mathematically by its cell dynamics (e.g., state equations) and synaptic law, which specifies each cell's interaction with its neighbors. We focus on reaction-diffusion CNNs having a linear synaptic law that approximates a spatial Laplacian operator. Such a synaptic law can be realized by one or more layers of linear resistor couplings. An autonomous CNN made of third-order universal cells and coupled to each other by only one layer of linear resistors provides a unified active medium for generating trigger (autowave) waves, target (concentric) waves, spiral waves, and scroll waves. When a second layer of linear resistors is added to couple a second capacitor voltage in each cell to its neighboring cells, the resulting CNN can be used to generate various turing patterns

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:42 ,  Issue: 10 )

Date of Publication:

Oct 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.