By Topic

Static Var Compensator and Active Power Filter With Power Injection Capability, Using 27-Level Inverters and Photovoltaic Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Flores, P. ; Dept. of Electr. Eng., Pontificia Univ. Catolica de Chile, Santiago ; Dixon, J. ; Ortuzar, M. ; Carmi, R.
more authors

An active power filter and static var compensator with active power generation capability has been implemented using a 27-level inverter. Each phase of this inverter is composed of three ldquoHrdquo bridges, all of them connected to the same dc link and their outputs connected through output transformers scaled in the power of three. The filter can compensate load currents with a high harmonic content and a low power factor, resulting in sinusoidal currents from the source. To take advantage of this compensator, the dc link, instead of a capacitor, uses a battery pack, which is charged from a photovoltaic array connected to the batteries through a maximum power point tracker. This combined topology make it possible to produce active power and even to feed the loads during prolonged voltage outages. Simulation results for this application are shown, and some experiments with a 3-kVA device are displayed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 1 )