By Topic

Resistive switching behaviors and mechanism of transition metal oxides-based memory devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Kang, J.F. ; Inst. of Microelectron., Peking Univ., Beijing, China ; Sun, B. ; Gao, B. ; Xu, N.
more authors

In this paper, the characteristics and mechanism of the transition metal oxide (TMO) based resistive switching memory (RRAM) devices were addressed. The results show that doping in oxide matrix materials, electrode material, and operating mode of the set/reset process may significantly affect the resistive switching behaviors of RRAM devices. Optimizing the dopants and matrix materials, electrode materials, device structure, and operating modes and understanding the related mechanisms are required to achieve the excellent device performance of TMO-based RRAM for the memory application. A unified physical model, based on the electron hopping transport between oxygen vacancies along the conductive filament paths, is used to explain and describe the resistive switching behaviors of the TMO based RRAM devices.

Published in:

Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on

Date of Conference:

20-23 Oct. 2008