By Topic

New architectures for optical packet switching using QD-SOAs for multi-wavelength buffering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vlachos, K. ; Comput. Eng. & Inf. Depart. & Res. Acad. Comput. Technol. Inst., Univ. of Patras, Patras ; Kabacinski, W. ; Weclewski, S.

We present two architectures for implementing optical buffers. Both use multi-wavelength selective elements like quantum dot semiconductor optical amplifiers (QD-SOAs) as multi-wavelength converters and fixed-length delay lines that are combined to form both an output queuing and a parallel buffer switch design. The output queuing buffer design requires less active devices (QD-SOA) when implementing large buffers, but the parallel buffer design becomes more profitable, when the number of wavelength channels that can be simultaneously processed by the wavelength selective switches (QD-SOAs) increases. This is because the number of active devices depends only on the buffer size. We also proposed scheduling algorithm to resolve packet contention in parallel buffer architecture and carried out a simulation considering mean packet delay, maximum buffer occupancy and packet loss probability.

Published in:

High Performance Switching and Routing, 2008. HSPR 2008. International Conference on

Date of Conference:

15-17 May 2008