By Topic

Modeling the Marginal Distribution of Gene Expression with Mixture Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wijaya, E. ; Comput. Biol. Res. Center, AIST Waterfront, Tokyo, Japan ; Harada, H. ; Horton, P.

We report the results of fitting mixture models to the distribution of expression values for individual genes over a broad range of normal tissues, which we call the marginal distribution of the gene. The base distributions used were normal, lognormal and gamma. The expectation-maximization algorithm was used to learn the model parameters. Experiments with artificial data were performed to ascertain the robustness of learning. Applying the procedure to data from two publicly available microarray datasets, we conclude that lognormal performed the best function for modeling the marginal distributions of gene expression. Our results should provide guidances in the development of informed priors or gene specific normalization for use with gene network inference algorithms.

Published in:

Future Generation Communication and Networking, 2008. FGCN '08. Second International Conference on  (Volume:3 )

Date of Conference:

13-15 Dec. 2008