By Topic

Semantic Features for Multi-view Semi-supervised and Active Learning of Text Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shiliang Sun ; Dept. of Comput. Sci. & Technol., East China Normal Univ., Shanghai

For multi-view learning, existing methods usually exploit originally provided features for classifier training, which ignore the latent correlation between different views. In this paper, semantic features integrating information from multiple views are extracted for pattern representation. Canonical correlation analysis is used to learn the representation of semantic spaces where semantic features are projections of original features on the basis vectors of the spaces. We investigate the feasibility of semantic features on two learning paradigms: semi-supervised learning and active learning. Experiments on text classification with two state-of-the-art multi-view learning algorithms co-training and co-testing indicate that this use of semantic features can lead to a significant improvement of performance.

Published in:

Data Mining Workshops, 2008. ICDMW '08. IEEE International Conference on

Date of Conference:

15-19 Dec. 2008