By Topic

Distributed Linear Programming and Resource Management for Data Mining in Distributed Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dutta, H. ; Center for Comput. Learning Syst., Columbia Univ., New York, NY ; Kargupta, H.

Advances in computing and communication has resulted in very large scale distributed environments in recent years. They are capable of storing large volumes of data and often have multiple compute nodes. However, the inherent heterogeneity of data components, the dynamic nature of distributed systems, the need for information synchronization and data fusion over a network and security and access control issues makes the problem of resource management and monitoring a tremendous challenge. In particular, centralized algorithms for management of resources and data may not be sufficient to manage complex distributed systems. In this paper, we present a distributed algorithm for resource and data management which builds on the traditional simplex algorithm used for solving linear optimization problems. Our distributed algorithm is an exact one meaning its results are identical if run in a centralized setting. We provide extensive analytical results and experiments on simulated data to demonstrate the performance of our algorithm.

Published in:

Data Mining Workshops, 2008. ICDMW '08. IEEE International Conference on

Date of Conference:

15-19 Dec. 2008