Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Service Oriented KDD: A Framework for Grid Data Mining Workflows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lackovic, M. ; Univ. of Calabria, Rende ; Talia, D. ; Trunfio, P.

Weka4WS is an extension of the Weka toolkit to support remote execution of data mining tasks as grid services. A first version of Weka4WS supporting concurrent execution of multiple data mining tasks on remote grid nodes has been presented in a previous work. In this paper we present a new version supporting also the composition and execution of data mining workflows on a grid. This new version of Weka4WS extends the KnowledgeFlow component of Weka by allowing the data mining tasks of the workflow to run in parallel on different machines, hence reducing the execution time. Besides the performance improvement, the capability of designing data mining applications as workflows allows to define typical patterns and to reuse them in different contexts. In this paper we describe the architecture of the system, the functionalities of the Weka4WS KnowledgeFlow, and some examples of use with their performance.

Published in:

Data Mining Workshops, 2008. ICDMW '08. IEEE International Conference on

Date of Conference:

15-19 Dec. 2008