By Topic

Hierarchical Text Categorization in a Transductive Setting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ceci, M. ; Dipt. di Inf., Univ. of Bari, Bari

Transductive learning is the learning setting that permits to learn from "particular to particular'' and to consider both labelled and unlabelled examples when taking classification decisions. In this paper, we investigate the use of transductive learning in the context of hierarchical text categorization. At this aim, we exploit a modified version of an inductive hierarchical learning framework that permits to classify documents in internal and leaf nodes of a hierarchy of categories. Experimental results on real world datasets are reported.

Published in:

Data Mining Workshops, 2008. ICDMW '08. IEEE International Conference on

Date of Conference:

15-19 Dec. 2008