By Topic

A statistical approach to map matching using road network geometry, topology and vehicular motion constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oliver Pink ; Institut für Mess- und Regelungstechnik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany. ; Britta Hummel

This paper presents a method for reliable matching of position and orientation measurements from a standard GPS receiver to a digital map. By incorporating road network topology in the matching process using a hidden Markov model, an optimum position and orientation history can be computed from a sequence of GPS measurements. Increased robustness is achieved by introducing constraints for vehicular motion in an extended Kalman filter and by reconstructing the original road network from the digital map using cubic spline interpolation. The proposed method delivers robust matching results for standard inner-city scenarios and gives a reliable estimate of the optimal position history even for severely disturbed GPS measurements.

Published in:

2008 11th International IEEE Conference on Intelligent Transportation Systems

Date of Conference:

12-15 Oct. 2008