By Topic

Ubiquitously Supervised Subspace Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianchao Yang ; Beckman Inst., Univ. of Illinois at Urbana-Champaign, Urbana, IL ; Shuicheng Yan ; Huang, T.S.

In this paper, our contributions to the subspace learning problem are two-fold. We first justify that most popular subspace learning algorithms, unsupervised or supervised, can be unitedly explained as instances of a ubiquitously supervised prototype. They all essentially minimize the intraclass compactness and at the same time maximize the interclass separability, yet with specialized labeling approaches, such as ground truth, self-labeling, neighborhood propagation, and local subspace approximation. Then, enlightened by this ubiquitously supervised philosophy, we present two categories of novel algorithms for subspace learning, namely, misalignment-robust and semi-supervised subspace learning. The first category is tailored to computer vision applications for improving algorithmic robustness to image misalignments, including image translation, rotation and scaling. The second category naturally integrates the label information from both ground truth and other approaches for unsupervised algorithms. Extensive face recognition experiments on the CMU PIE and FRGC ver1.0 databases demonstrate that the misalignment-robust version algorithms consistently bring encouraging accuracy improvements over the counterparts without considering image misalignments, and also show the advantages of semi-supervised subspace learning over only supervised or unsupervised scheme.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 2 )