By Topic

Modeling, Control Design, and Experimental Validation of an Overactuated Thermal Management System for Engine Dynamometer Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vermillion, C. ; EECS/NAME, Univ. of Michigan, Ann Arbor, MI ; Sun, J. ; Butts, K.

Effective engine mapping and calibration are contingent upon tight control of the environment in which the mapping and calibration are performed. Among the most important variables to be controlled are the temperatures of coolant and oil that circulate through the engine block. Because of the large time constants associated with thermodynamic systems, controlling these variables often represents a bottleneck in the engine mapping and calibration processes. In this paper, we examine a particular layout for a thermal management unit, which is currently being used in practice. By developing and analyzing a thermodynamic model of the system, we are able to gain insight into the system dynamics and explore special features to optimize the temperature response. In particular, we will show how the overactuation in the system may be leveraged in the presence of hard saturation constraints and different dynamic actuator authorities. We present design and validation results (both simulation and experimental) for the proposed controller, and compare the performance to the baseline controller in order to quantify improvements.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:17 ,  Issue: 3 )